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Preliminaries

Consider a hyperbolic system of conservation laws

∂tU + ∂xF (U) = 0

where U(x, t) takes values on an open convex setO ⊂ RN and F : O → RN is a
smooth flux function.

We are interested in the numerical solution of the Cauchy problem for the system by
means of a finite volume method of the form

Un+1
i = Uni −

∆t

∆x

(
Fni+1/2 − F

n
i−1/2

)
where Uni denotes the approximation to the average of the exact solution at the cell
Ii = [xi−1/2, xi+1/2] at time tn = n∆t.

We consider numerical fluxes that are defined as (we drop the dependence on time)

Fi+/2 =
F (Ui) + F (Ui+1)

2
−

1

2
Qi+1/2(Ui+1 − Ui)

where Qi+1/2 is a numerical viscosity matrix. Different numerical methods can be
designed depending on the choice of the viscosity matrix.
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Preliminaries

Examples:

Roe:
Qi+1/2 = |Ai+1/2|

where Ai+1/2 is a Roe matrix for the system.

Lax-Friedrichs:

Qi+1/2 =
∆x

∆t
I

being I the identity matrix.

Lax-Wendroff:

Qi+1/2 =
∆t

∆x
A2
i+1/2

FORCE and GFORCE:

Qi+1/2 = (1− ω)
∆x

∆t
Id+ ω

∆t

∆x
A2
i+1/2

with ω = 1
2

and ω = 1
1+CFL , respectively.
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Preliminaries

We propose a class of finite volume methods defined by

Qi+1/2 = f(Ai+1/2)

where f : R→ R is a function and Ai+1/2 is a Roe matrix or the Jacobian of the flux
evaluated at some average state.

Some properties of f :

f(x) > 0 and smooth.

f(Ai+1/2) should be easy to evaluate: no spectral decomposition of Ai+1/2 needed.

L∞ linear stability:

CFL
∆x

∆t
> f(x) > |x|, ∀x ∈ [λ

i+1/2
1 , λ

i+1/2
N ],

where λi+1/2
l are the eigenvalues of Ai+1/2.

f(x) should be as close as possible to |x|.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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PVM methods

One possible choice is to set
f(x) = Pd(x),

being Pd(x) a polynomial of degree d.

In this case
Qi+1/2 = Pd(Ai+1/2)

that is, Qi+1/2 is a Polynomial Viscosity Matrix (PVM).

[Castro-Fernández Nieto, SIAM J. Sci. Comput. 34, 2012]

PVM methods has been applied to multilayer shallow water equations or the two-phase
flow model of Pitman-Le, for which the eigenstructures are not explicitely known.

PVM methods can be extended to nonconservative hyperbolic systems, following the
theory of path-conservative schemes ([Pares, SIAM J. Numer. Anal. 44, 2006]).

Some well-known solvers as Lax-Friedrichs, Rusanov, FORCE/GFORCE, HLL, Roe,
Lax-Wendroff, etc., can be recovered as PVM methods. In particular, this allows to build
direct extensions of the mentioned solvers to the nonconservative case.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Some examples:

Lax-Friedrichs, modified Lax-Friedrichs and Rusanov (local LxF):

P0(x) = S0, S0 ∈ {SLF, S
mod
LF , SRus}

with SLF = ∆x
∆t

, Smod
LF = CFL∆x

∆t
and SRus = maxj |λ

i+1/2
j |.

HLL:
P1(x) = α0 + α1x

such that P1(SL) = |SL|, P1(SR) = |SR|, SL and SR being approximations to the
minimum and maximum wave speeds.

FORCE:
P2(x) = α0 + α2x

2

such that P2(S0) = S0 and P ′2(S0) = 1, with S0 = SLF.

The related solver proposed in [Degond et al., C.R. Acad. Sci. Paris Sér. I 328, 1999] can
be viewed as a PVM method based on a second order polynomial.

The incomplete Riemann solver based on Krylov subspace approximations of |x| in
[Torrilhon, SIAM J. Sci. Comput. 34, 2012] can also be interpreted as a PVM scheme.

 

 

SL λ1 λ2
. . .

λj
. . .

λN SR

 
HLL
Degond et al.
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PVM-Force type iterative method

Consider the polynomials defined as follows

P0(x) = 1, Pn(x) = Pn−1(x)−
P 2
n−1(x)− x2

2
, n = 1, 2, . . .

Viscosity matrix:

Qi+1/2 = |λmax|Pn
(

1

|λmax|
Ai+1/2

)
≈ |Ai+1/2|

where λmax is the eigenvalue of Ai+1/2 with maximum modulus.

Observe that the viscosity matrix obtained with n = 1 is

Qi+1/2 =
λmax

2
Id+

1

2λmax
A2
i+1/2.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Figure: PVM-Force type iterative method: Pn(x) for n = 1, 4, 7 and 10.
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PVM-Chebyshev

Chebyshev polynomials provide optimal uniform approximation to |x| in [−1, 1]:

|x| =
2

π
+
∞∑
k=1

4

π

(−1)k+1

(2k − 1)(2k + 1)
T2k(x), x ∈ [−1, 1],

where the Chebyshev polynomials of even degree T2k(x) are recursively defined as

T0(x) = 1, T2(x) = 2x2 − 1, T2k(x) = 2T2(x)T2k−2(x)− T2k−4(x).

Viscosity matrix:

Qi+1/2 = P2p(Ai+1/2) = |λmax|τ2p
(

1

|λmax|
Ai+1/2

)
≈ |Ai+1/2|

where λmax is the eigenvalue of Ai+1/2 with maximum modulus.

[Castro, Gallardo, Marquina, J. Sci. Comput. 60, 2014]
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Figure: Left: Chebyshev approximations τ2p(x) for p = 2, 3, 4. Right: τ8(x) and τε8 (x).

Notice that τ2p(x) do not satisfy the stability condition τ2p(x) > |x|. This drawback can
be avoided by using τε2p(x) = τ2p(x) + ε such that τε2p(x) > |x|.
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PVM-Sign approximations

We could also consider methods based on the polynomial approximation of the sign function to
define an approximation of |Ai+1/2|.

Let us consider the Newton-Schulz iterative procedure to approximate the sign of x,
x ∈ [−1, 1]

x0 = x, xn =
xn−1

2

(
3− x2

n−1

)
, n = 1, 2, 3, . . .

then we could define

Qi+1/2 = Ai+1/2Pn

(
1

|λmax|
Ai+1/2

)
≈ |Ai+1/2|

where Pn(x) is the polynomial defined by

P0(x) = x, Pn(x) =
Pn−1(x)

2

(
3− P 2

n−1(x)
)
, n = 1, 2, . . .
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Figure: Left: PVM sign approximation for n = 4, 7 and 10. Right: PVM sign approximation
Zoom at [−0.2, 0.2]
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PVM-Chebyshev Jacobian free method

Chebyshev Jacobian free implementation

Note that the viscosity matrix Qi+1/2 need not to be computed explicitly, but only the
vector Qi+1/2∆U , where ∆U = Ui+1 − Ui:

Qi+1/2∆U = |λmax|
(
α0∆U +

p∑
j=1

αjU
[2j]

)

with α0 = 2
π

, αj = 4
π

(−1)j+1

(2j−1)(2j+1)
for j > 1 and

U [2j] = T2j

(
|λmax|−1Ai+1/2

)
∆U.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Chebyshev Jacobian free implementation

From the definition of Chebyshev polynomials, U [2j] can be recursively defined as

U [0] = ∆U .

U [2] = 2|λmax|−2A2
i+1/2

∆U −∆U .

U [2j] = 4|λmax|−2A2
i+1/2

U [2j−2] − 2U [2j−2] − U [2j−4], for j > 2.

The above expressions allow an efficient implementation of the PVM-Chebyshev method.

In some cases the Jacobian Ai+1/2 may be difficult or expensive
to compute. It is then interesting to implement the recursive form of the scheme without
explicitly computing Ai+1/2.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Chebyshev Jacobian free implementation

The finite difference formulation

A(U)V =
∂F

∂U
(U)V = lim

ε→0

F (U + εV )− F (U)

ε
≈
F (U + εV )− F (U)

ε

leads to the following approximation:

A(U)2V ≈
F
(
U + F (U + εV )− F (U)

)
− F (U)

ε

where the parameter ε must be small with respecto to the norm of U .

Then, the vector U [2j] can be redefined as

U [2j] =
4

ε|λmax|2

(
F
(
Ui+1/2 + F (Ui+1/2 + εU [2j−2])− F (Ui+1/2)

)
− F (Ui+1/2)

)
− 2U [2j−2] − U [2j−4]

where Ui+1/2 is an intermediate state between Ui and Ui+1.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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RVM methods

The order of approximation to |x| can be greatly improved by using rational functions
instead of polynomials.

RVM (Rational Viscosity Matrix) methods are defined in the same way as PVM methods,
but using rational functions instead of polynomials.

Two families will be considered here:

Newman rational functions ([Newman, Michigan Math. J. 11, 1964]), defined as

Rr(x) = x
p(x)− p(−x)

p(x) + p(−x)
, p(x) =

r∏
k=1

(x+ ξk)

for a given set of nodes 0 < ξ1 < · · · < ξr 6 1.

Halley rational functions, recursively defined as

Hr+1(x) = Hr(x)
Hr(x)2 + 3x2

3Hr(x)2 + x2
, H0(x) = 1.

[Castro, Gallardo, Marquina, J. Sci. Comput. 60, 2014]

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Figure: Left: Newman approximations R8(x) and Rε8(x). Right: Halley functions Hr(x),
r = 3, 4, 5. Zoom at [−0.1, 0.1]
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Approximate OS solvers

The Osher-Solomon (OS) method

The Osher-Solomon scheme is a nonlinear and complete Riemann solver which enjoys a
number of attractive features: it is robust, entropy-satisfying, smooth and well-behaved
when computing slowly-moving shocks.

OS numerical flux:

Fi+1/2 =
F (Ui) + F (Ui+1)

2
−

1

2

∫ 1

0

∣∣A(Φ(s))
∣∣Φ′(s)ds

where A = ∂F
∂U

is the Jacobian of F and Φ is a path linking Ui and Ui+1 in phase space.

It requires the computation of a path-dependent integral in phase space, which makes it
very complex and computationally expensive. Due to this difficulties, its practical
application has been restricted to certain systems, e.g., the compressible Euler equations.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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The Dumbser-Osher-Toro (DOT) solver

Dumbser and Toro ([Commun. Comput. Phys. 10, 2011]) have proposed a way to
circumvent the drawbacks of the Osher-Solomon solver, maintaining at the same time its
good features.

The idea is to take Φ as the segment joining Ui and Ui+1, and then use a Gauss-Legendre
quadrature formula to approximate the resulting integral.

DOT numerical flux:

Fi+1/2 =
F (Ui) + F (Ui+1)

2
−

1

2

( q∑
k=1

ωk
∣∣A(Ui + sk(Ui+1 − Ui))

∣∣)(Ui+1 − Ui).

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Approximate OS solvers

The DOT numerical scheme is simple to implement and applicable to general hyperbolic
systems, even in the nonconservative case.

As a drawback, it requires the knowledge of the full eigenstructure of the system, in order
to compute the intermediate matrices

|A(Ui + sk(Ui+1 − Ui))|, k = 1, . . . , q.

For systems in which the eigenstructure is not known or difficult to compute, the DOT
scheme may be computationally expensive.

We propose a new version of the DOT scheme in which the intermediate matrices are
approximated in a simple and efficient way.
[Castro, Gallardo, Marquina, Appl. Math. Comput. 272, 2016]

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Approximate OS solvers

The idea of the approximate OS solvers consists in using functional approximations to the
absolute value function to compute the intermediate matrices, in the same spirit as the
PVM and RVM methods previously introduced.

Thus, if P (x) ia a polynomial approximation to |x| satisfying the stability condition, the
polynomial approximate OS flux associated to P (x) is defined as

Fi+1/2 =
F (Ui) + F (Ui+1)

2
−

1

2

( q∑
k=1

ωkP̃
(k)
i+1/2

)
(Ui+1 − Ui)

where

P̃
(k)
i+1/2

=
∣∣λ(k)
i+1/2,max

∣∣P(∣∣λ(k)
i+1/2,max

∣∣−1
A

(k)
i+1/2

)
with

A
(k)
i+1/2

= A(Ui + sk(Ui+1 − Ui)), k = 1, . . . , q.

Obviously, rational approximate OS fluxes can be defined in a similar way.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Approximate Os solvers: Some examples

Ideal magnetohydrodynamics (MHD) equations.

Relativistic hydrodynamics (RHD) equations.

Two-layer Savage-Hutter shallow-water model.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Ideal magnetohydrodynamics (MHD) equations:



∂tρ+∇ · (ρv) = 0

∂t(ρv) +∇ ·
(
ρvvT +

(
P +

1

2
B2

)
I −BBT

)
= 0

∂tB−∇× (v ×B) = 0

∂tE +∇ ·
((

γ

γ − 1
P +

1

2
ρq2

)
v − (v ×B)×B

)
= 0

Divergence-free condition: ∇ ·B = 0

Notations:

ρ: mass density; v: velocity field; B: magnetic field.
E = 1

2
ρq2 + 1

2
B2 + ρε is the total energy, where q = ‖v‖, B = ‖B‖ and ε

denotes the specific internal energy.
Equation of state: P = (γ − 1)ρε; P : hydrostatic pressure; γ: adiabatic constant.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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The∇ ·B = 0 constraint

The divergence-free condition has been imposed using the the nonconservative form of the
ideal MHD equations as in [Fuchs, Mishra, Risebro, J. Comput. Phys. 228, 2009]

∂tρ+∇ · (ρv) = 0

∂t(ρv) +∇ ·
(
ρvvT +

(
P +

1

2
B2

)
I −BBT

)
= −B(∇ ·B)

∂tB−∇× (v ×B) = −v(∇ ·B)

∂tE +∇ ·
((

γ

γ − 1
P +

1

2
ρq2

)
v − (v ×B)×B

)
= −(v ·B)(∇ ·B)

The path-conservative framework is applied to this set of equations, where the r.h.s. can be
interpreted as a source term.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Approximate OS solvers: Some examples

Brio-Wu shock tube problem

Riemann problem for the 1d MHD system with initial data (Brio-Wu, 1988):

(ρ, vx, vy , vz , Bx, By , Bz , P ) =

{
(1, 0, 0, 0, 0.75, 1, 0, 1) for x 6 0,

(0.125, 0, 0, 0, 0.75,−1, 0, 0.1) for x > 0,

with γ = 2.

∆x = 1/500, CFL=0.8, T = 0.2.

Schemes: HLL, Roe, DOT, OS-Cheb-4, OS-Newman-4, and OS-Halley-2.

High-order methods: third-order PHM in space and third-order TVD Runge-Kutta in time.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Approximate OS solvers: Some examples

Brio-Wu shock tube problem
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Figure: Zoom of the density compound wave. Left: first order. Right: third order.
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Brio-Wu shock tube problem
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Figure: Efficiency curves (100, 200, 400, and 800 cells) (third order).
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Approximate OS solvers: Some examples

Smooth isentropic vortex

The purpose of this test, proposed by Hu and Shu, is to analyze the convergence and
stability of the proposed numerical schemes.

Initial condition: linear perturbation of an homogeneous state:

(ρ, vx, vy , P ) = (1 + δρ, 1 + δvx, 1 + δvy , 1 + δP ).

The exact solution is simply the initial condition convected by the mean velocity.

Periodic boundary conditions and CFL=0.8.

Schemes: High-order DOT, OS-Cheb-4, OS-Newman-4, and OS-Halley-2. All of them
give similar results.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Approximate OS solvers: Some examples

Smooth isentropic vortex
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Figure: Density cut in the x-direction. Left: t = 10. Right: t = 100.
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Approximate OS solvers: Some examples

Smooth isentropic vortex

OS-Cheb-4 OS-Newman-4
N L1 error L1 order L1 error L1 order
16 1.47E+00 – 1.47E+00 –
32 7.77E–01 0.92 7.95E–01 0.89
64 1.98E–01 1.97 2.03E–01 1.97

128 1.37E–02 3.85 1.39E–02 3.87
OS-Halley-2 DOT

N L1 error L1 order L1 error L1 order
16 1.46E+00 – 1.45E+00 –
32 7.81E–01 0.90 7.95E–01 0.87
64 1.95E–01 2.00 1.96E–01 2.02

128 1.33E–02 3.87 1.33E–02 3.88

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Approximate OS solvers: Some examples

The Orszag-Tang vortex

Starting from a smooth state, the system develops complex interactions between different
shock waves generated as the system evolves in the transition to turbulence.

Initial data (Orszag and Tang, 1979): For (x, y) ∈ [0, 2π]× [0, 2π],

ρ(x, y, 0) = γ2, vx(x, y, 0) = − sin(y), vy(x, y, 0) = sin(x),

Bx(x, y, 0) = − sin(y), By(x, y, 0) = sin(2x), P (x, y, 0) = γ,

with γ = 5/3.

Periodic boundary conditions on a 192× 192 uniform mesh and CFL=0.8.

Schemes: DOT, OS-Cheb-4, OS-Newman-4, and OS-Halley-2.

High-order methods: third-order compact WENO in space and third-order TVD
Runge-Kutta in time.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Approximate OS solvers: Some examples

The Orszag-Tang vortex
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Figure: Density (left) and pressure (right) at time t = 0.5. Third-order OS-Cheb-4.
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Approximate OS solvers: Some examples

The Orszag-Tang vortex
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Figure: Density (left) and pressure (right) at time t = 2. Third-order OS-Cheb-4.
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Approximate OS solvers: Some examples

The Orszag-Tang vortex
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Figure: Density (left) and pressure (right) at time t = 3. Third-order OS-Cheb-4.
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Approximate OS solvers: Some examples

The rotor problem

Initially, there is a dense rotating disk at the center of the domain, while the ambient fluid
remains at rest. These two areas are connected by means of a taper function, which helps to
reduce the initial transient. Since the centrifugal forces are not balanced, the rotor is not in
equilibrium. The rotating dense fluid will be confined into an oblate shape, due to the action
of the magnetic field. (Balsara and Spicer, 1999).

Periodic boundary conditions on a 200× 200 uniform mesh and CFL=0.8.

Schemes: DOT, OS-Cheb-4, OS-Newman-4, and OS-Halley-2.

OS-Cheb-4, OS-Newman-4 and OS-Halley-2 give very similar results.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Approximate OS solvers: Some examples

The rotor problem
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Figure: Left: density ρ. Right: pressure P . Third-order OS-Cheb-4 scheme at time t = 0.295.
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Jacobian-free PVM-Chebyshev: Numerical tests

Relativistic hydrodynamics (RHD) equations:

∂tU + ∂xF (U) = 0

U =

DS
τ

 , F (U) =



DS

τ + P +D

S2

τ + P +D
+ P

(τ + P )S

τ + P +D


.

Primitive variables (reference frame): ρ (density), u (velocity), ε (energy).

Conserved variables (laboratory frame): D (mass density), S (momentum), τ (energy).

Recovery:
D = ρW, S = ρhW 2u, τ = ρhW 2 − P − ρW.

P = (γ − 1)ρε: pressure (ideal gas); W = 1√
1−u2

: Lorenz factor;

h: enthalpy; speed of light: c = 1.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Jacobian-free OS-Cheb: Numerical tests

Relativistic blast wave tests

At t = 0 two regions of an ideal gas at rest are separated by a diaphragm
which is suddenly removed.

Test 1:

(ρ, u, P ) =

{
(10, 0, 13.3) for x 6 0.5,

(1, 0, 0) for x > 0.5,

with γ = 5/3; ∆x = 1/800, CFL=0.9, T = 0.4.

Test 2 (Norman-Winkler, 1986):

(ρ, u, P ) =

{
(1, 0, 103) for x 6 0.5,

(1, 0, 10−2) for x > 0.5,

with γ = 5/3; ∆x = 1/800, CFL=0.9, T = 0.35.

Scheme: Jacobian-free OS-Cheb-6. Third-order PHM in space and third-order TVD
Runge-Kutta in time.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Jacobian-free OS-Cheb: Numerical tests

Relativistic blast wave tests

Test 1
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Figure: Normalized profiles of density, velocity and pressure. Left: first order; right: third order.
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Jacobian-free OS-Cheb: Numerical tests

Relativistic blast wave tests

Test 2
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Figure: Normalized profiles of density, velocity and pressure. Left: first order; right: third order.
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Lituya Bay event

At 10:16pm (local time) on July 10,
1958. Mw 8.3 earthquake.

Southwest sides and bottoms of
Gilbert and Crillon inlets moved
northwestward and relative to the
northeast shore at he head of the bay,
on the opposite side of the
Fairweather fault.

Shaking lasted about 4 minutes.
Estimated total movements of 6.4m
horizontally and 1 m vertically.

About 2 minutes after the beginning
of the earthquake the landslide was
triggered.

Slide volume estimated by Miller,
1960 in 30.6× 106 m3.

Picture from Weiss et. al., 2009M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Lituya Bay event

Two-layer Savage-Hutter
shallow-water model is used.

A second order PVM-2U based on
MUSCL reconstruction operator is
used.

A multi-GPU implementation is
performed in order to speed-up the
computation.

Picture from Weiss et. al., 2009
M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Lituya Bay 1958 event

Figure: Lituya Bay event: Time t = 0 sec.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Lituya Bay 1958 event

Figure: Lituya Bay event: Time t = 8 sec.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Lituya Bay 1958 event

Figure: Lituya Bay event: Time t = 10 sec.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Lituya Bay 1958 event

Figure: Lituya Bay event: Time t = 20 sec.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Lituya Bay 1958 event

Figure: Lituya Bay event: Time t = 30 sec.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Lituya Bay 1958 event

Figure: Lituya Bay event: Time t = 39 sec (max runup).

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Lituya Bay event

Figure: Lituya Bay event: estimated runup at Gilbert-Inlet
M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Lituya Bay event

Figure: Lituya Bay event: estimated runup at Cenotaph Island

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Conclusions

PVM, RVM and approximate OS methods provide an alternative to Roe’s scheme when
approximating time-dependent solutions in which the spectral decomposition is
computationally expensive.

Jacobian free implementation is also possible for some PVM solvers. This method is very
easy to implement and could be used as and alternative method to other Jacobian free
methods like Rusanov, Lax-Friedrich HLL, Force and GForce methods and, in general,
intermediate waves can be precisely captured for an appropriate degree of approximation
of the polynomial or rational function used.

PVM, RVM and approximate OS solvers provide good results concerning precision and
computational cost.

PVM, RVM and approximate OS solvers could also be extended to balance laws and
non-conservative problems using the path-conservative framework.

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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Thank you for your attention

Webpage:

http://edanya.uma.es

Youtube Channel:

http://youtube.com/grupoedanya

M. J. Castro, J.M. Gallardo, A. Marquina Granada, 20 abril 2017
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