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I. Motivations

MDE is a special class of Generalized Differential

Equations. MDE can be understood as Differential

Equations with Measures as coefficients.

• Used in physics to model discontinuous, non-smooth,

jump phenomena (or even the quantum effect).

• Mathematically, MDE is the limiting case of ODE/PDE.

Some problems unclear in ODE are much simpler in MDE.
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General theory for Generalized ODE has been established,

especially by the Prague school (Kurzweil, Schwabik et

al.)

• Š. Schwabik, Generalized Ordinary Differential

Equations, World Scientific, Singapore, 1992

• A. B. Mingarelli, Volterra-Stieltjes Integral Equations

and Generalized Ordinary Differential Expressions,

Lect. Notes Math., Vol. 989, Springer, New York, 1983
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A motivating example for MDE is as follows. In the

history of sciences and mathematics, we have the first

non-trivial differential equation

d2y

dx2
+ ρ(x)y = 0, x ∈ I = [0, 1], (1)

where x, y are 1D, while ρ(x) is non-constant.

• Spatial oscillation of 1D strings: ρ(x) is the

(non-negative) density.
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This will lead to

• Weighted eigenvalue problems

d2y

dx2
+ τρ(x)y = 0, x ∈ I = [0, 1]. (2)

Here τ is the spectral parameter.

• Eigenvalue problems

d2y

dx2
+ (λ+ q(x))y = 0, x ∈ I. (3)

Here λ is the spectral parameter and q(x) is the potential.
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With the Dirichlet boundary condition

(D) : y(0) = y(1) = 0,

or, with the Neumann boundary condition

(N) : y′(0) = y′(1) = 0,

the structures of eigenvalues of problems (2) and (3) are

completely clear. For example, problem (2) admits a

sequence of (positive) eigenvalues (or frequencies)

τDm = τDm(ρ), m ∈ N, and a sequence of (non-negative)

eigenvalues (or frequencies) τNm = τNm (ρ),

m ∈ Z+ := {0} ∪ N.
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In the classical textbooks, one is concerned with

continuous densities ρ(x) ∈ C(I).

More generally, densities ρ(x) are in the Lebesgue space

L1(I). In this case, the distribution of mass

µρ(x) :=

∫
[0,x]

ρ(s) ds, x ∈ I,

is absolutely continuous (a.c.) on I.
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Problems

1. When the distributions of masses become more and

more singular like the completely singular (c.s.)

distributions (e.g. Dirac distributions), how the oscillation

of strings can be explained?

2. What is the eigenvalue theory for problems with

general distributions?

These can be explained by Measure Differential Equations

(MDE).
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II. MDE: Solutions

Instead distributions, a more suitable mathematical notion

is measures.

We recall the concept of (Radon) Measures. Let I = [0, 1]

and

C(I) = space of continuous real-valued functions on I,

with the supremum norm ‖ · ‖C0.
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The measure space on I is the dual space

M0(I) := (C(I), ‖ · ‖C0)∗,

with the norm ‖ · ‖var of total variation.

Riesz representation theorem µ ∈M0(I) are those

functions on I such that

• µ(x) is right-continuous on (0, 1),

• µ(x) has bounded variation on I: ‖µ‖var < +∞,

• µ(x) is usually normalized as µ(0+) = 0.
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Examples of measures

1. For q ∈ L1(I),

µq(x) :=

∫ x

0

q(s) ds, x ∈ I,

is an absolutely continuous (a.c.) measure on I w.r.t. the

Lebesgue measure `: `(x) ≡ x.

2. (Unit) Dirac measures δa, located at a ∈ I, are

completely singular (c.s.). For a = 0,

δ0(x) =

{
−1 at x = 0,

0 for x ∈ (0, 1].
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For a ∈ (0, 1],

δa(x) =

{
0 for x ∈ [0, a),

1 for x ∈ [a, 1].

3. Singularly continuous (s.c.) measures: µ : I → R is

continuous and

µ′(x) = 0 `-a.e. x ∈ I, µ(I) 6= 0.
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Arnold’s Devil’s Staircase: defined from dynamical

systems. For parameters ε ∈ [0, 1/2π] and x ∈ I, define a

homeomorphism

ϕε,x : R→ R, θ 7→ θ + x+ ε sin(2πθ).

The rotation number of ϕε,x is

%ε(x) := lim
n→+∞

ϕnε,x(0)

n
= lim

n→+∞

ϕnε,x(θ)− θ
n

∀θ ∈ R.

(Independence of the initial values θ ∈ R)
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As a function of x ∈ I,

• %ε(x) ∈ C(I),

• %ε(x) is non-decreasing on I,

• %ε(0) = 0 and %ε(1) = 1,

• %0 = `. In case ε ∈ (0, 1/2π], %−1
ε (r) is a

non-trivial interval for each rational r ∈ [0, 1]

• %ε(x) is an s.c. measure,

• by considering x as the standard time, %ε(x) can be

considered as a singular time.
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Devil’s staircase with ε = 1/(2π).



17

Theorem 1. (From real analysis) For 1D measure µ ∈
M0(I), one has the unique decomposition

µ = µac + µsc + µcs, (4)

where µsc(x) is s.c., and

µac(x) =

∫
[0,x]

ρ(s) ds, µcs(x) =
∑
a∈A

maδa(x),

where A ⊂ I is at most countable and masses ma ∈ R
satisfy ∑

a∈A

|ma| < +∞.
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Integration

For y ∈ C(I) and µ ∈M0(I), the Riemann-Stieltjes

integral ∫
I

y dµ

is defined. For subintervals J ⊂ I, the Lebesgue-Stieltjes

integral ∫
J

y dµ

is also well defined.
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2nd-order linear MDE

With a measure µ ∈M0(I), the 2nd-order linear MDE is

written in [15] (Meng & Zhang, JDE, 2013) as

dy• + y dµ(x) = 0, x ∈ I. (5)

The initial value (at x = 0) is

(y(0), y•(0)) = (y0, v0) ∈ R2 (C2).

Formally, MDE (5) is equivalent to

dy(x) = z(x) dx, dz(x) = −y(x) dµ(x).
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The solution y(x) and its generalized velocity y•(x) of the

IVP of (5) are determined by the system of integral

equations

y(x) = y0 +

∫
[0,x]

y•(s) ds for x ∈ I, (6)

y•(x) =

{
v0 for x = 0,

v0 −
∫

[0,x] y(s) dµ(s) for x ∈ (0, 1].
(7)
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Remark

• If µ(x) is C1, Eq. (7) is reduced to Riemann integral.

• If µ(x) is a.c., Eq. (7) is reduced to Lebesgue integral.

• For general measure µ, Eq. (7) is concerned with the

Riemann-Stieltjes integral, while Eq. (6) is concerned with

the Lebesgue integral.
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Known results for linear MDE

• The IVP has the unique solution (y(x), y•(x)) on I.

• Solutions y(x) are absolutely continuous in x ∈ I.

• Generalized velocities y•(x) are non-normalized

measures or BV-functions on I.

• At x ∈ (0, 1), y•(x) coincides with the classical

right-derivative of y(x)

y•(x) = lim
s↓x

y(s)− y(x)

s− x
.
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• In case ∆µ(x0) := µ(x0)− µ(x0−) 6= 0, velocity y•(x)

has a jump or impulse at x = x0

y•(x0)− y•(x0−) = −y(x0) ·∆µ(x0).

• MDE (5) is conservative: One has the Liouville law.

All proofs are obtained by integration, not by

differentiation!

Some of the Dirichlet eigen-functions for µ = rδ1/2 as

potentials are as in the following figures: r = 0, r > 0 and

r < 0.
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Comparisons with other types of differential equations

Stochastic Differential Equation (SDE):

The decomposition (4) for measures can be written as

µ = µac + µs, where µs := µsc + µcs.

Then MDE (5) is

dy• + ρ(x)y dx+ y dµs(x) = 0.

This similar to SDE, but with many types of singular

measures µs(x).
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Impulsive Differential Equation (IDE):

In (4), µsc = 0 and A ⊂ I is discrete. MDE (5) is

dy• + ρ(x)y dx+ y d

(∑
a∈A

maδa(x)

)
= 0.

IDE with impulses at all a ∈ A

y•(a)− y•(a−) = −may(a).

Hence MDE (5) allows infinitely many impulses for

velocity y•(x), e.g., at all x ∈ I ∩Q.
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Difference Equation (DE):

In (4), µc := µac + µsc = 0. MDE (5) is

dy• + y d

(∑
a∈A

maδa(x)

)
= 0.

Solutions are piecewise linear. It is a Difference Equation

or a system of algebraic equations.

Integral Equation (IE): In case µ = µsc is singularly

continuous,

dy• + y dµsc(x) = 0

is an integral equation, which is not studied in ODE.
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Differential Equation on Time Scale T (⊂ I) (DETS):

In (4), let µsc = 0. On any gap interval (α, β) of I \ T,

set ρ(x) = 0. Then MDE (5) is

dy• + ρ(x)y dx+ y d

(∑
a∈A

maδa(x)

)
= 0.

This models some type of DETS.
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Our results on solutions of MDE

• The usual topology on measures is induced by the norm

‖ · ‖var of total variation: (M0(I), ‖ · ‖var) is a Banach

space.

• The weak∗ topology w∗ is defined as µk → µ iff∫
I

y dµk →
∫
I

y dµ ∀y ∈ C(I).
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Theorem 2. ([15]: Dependence of solutions of IVP on

measures)

• Continuous dependence: For solutions themselves,

(M0(I), w∗) 3 µ→ y(·;µ) ∈ (C(I), ‖ · ‖C0)

is continuous;

• for velocities,

(M0(I), w∗) 3 µ→ y•(·;µ) ∈ (M(I), w∗)

is continuous; and
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• for ending velocities (at x = 1),

(M0(I), w∗) 3 µ→ y•(1;µ) ∈ R

is continuous.

• Continuous Fréchet differentiability: At any time x0 ∈ I,

(M0(I), ‖ · ‖var) 3 µ→

(y(x0;µ), y•(x0;µ)) ∈ R2

is continuously differentiable.
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The second result for velocities is optimal: For any x0 ∈ (0, 1),

(M0(I), w∗) 3 µ→ y•(x0;µ) ∈ R

may NOT be continuous at some measure µ.

Most important ideas of the proof:

1. Transfer solutions of IVP to the fixed point of integral operator

y(x) = y0 + v0x−
∫
I

G(x, s)y(s) dµ(s), x ∈ I,

where the kernel G : I2→ R is continuous:

G(x, s) =

{
x− s for 0 ≤ s ≤ x ≤ 1,

0 for 0 ≤ x ≤ s ≤ 1.
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2. Compactness argument from weak∗ topology.

3. For the optimal result on velocities, the reason is that

µn
w∗−→ µ on I

6=⇒ µn|J
w∗−→ µ|J on J,

where J is a subinterval of I. (This is different from the weak

convergence in Lp spaces!) �
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III. MDE: Eigenvalue Theories

III1. Potentials are Measures

For an arbitrary measure µ(x), considered as a potential,

one has the corresponding Eigenvalue Problem

dy• + y dµ(x) + λy dx = 0, x ∈ I. (8)

With the Dirichlet or the Neumann boundary conditions

(D) : y(0) = y(1) = 0, (N) : y•(0) = y•(1) = 0,

the basic eigenvalue theory has been obtained in [15].
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As for the Structure of eigenvalues,

Theorem 3. (Meng & Zhang, JDE, 2013) Structures of

MDE (7) are the same as the classical Sturm-Liouville

problems of ODE:{
λDi (µ)

}
i∈N ,

{
λNi (µ)

}
i∈Z+ , λi(µ)→ +∞.
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As for the Dependence of eigenvalues on measures,

Theorem 4. (Meng & Zhang, JDE, 2013)

• λD/Ni (µ) of MDE are continuously Fréchet differentiable

in measures µ ∈ (M0(I), ‖ · ‖var). Moreover,

∂µλ
D/N
i (µ) = −

∣∣∣ED/N
i (·;µ)

∣∣∣2 ,
where E

D/N
i (x;µ) are normalized eigen-functions associat-

ed with λ
D/N
i (µ).

• λ
D/N
i (µ) of MDE are continuous in measures µ ∈

(M0(I), w∗).
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• The strongest continuous dependence!

• For the classical Sturm-Liouville problems, one has the strong

continuity of eigenvalues in integrable potentials/weights. See, for

example, J. Pöschel and E. Trubowitz (The Inverse Spectral Theory,

Academic Press, New York, 1987) for a preliminary result, and our

works [1, 2, 3, 4, 6] for general cases of 2nd or 4th-order problems.

Main ideas of the proof

A novel definition for the Prüfer transformation and the arguments of

MDE.

1. Recall that, for eigenvalue problem

y′′ + (λ+ q(x))y = 0, x ∈ [0, 1],
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the simplest approach is to introduce the argument θ(x) by the

Prüfer transformation

y = r sin θ, y′ = r cos θ.

For ODE case, θ(x) is (absolutely) continuous in x ∈ [0, 1] and is

determined by nonlinear ODE

dθ

dx
= cos2 θ + (λ+ q(x)) sin2 θ, x ∈ [0, 1].

For MDE (8), it seems that the corresponding argument θ is defined

using 1st-order nonlinear MDE

dθ = cos2 θ dx+ sin2 θ d (λx+ µ(x)) , x ∈ [0, 1].
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This is hopeless, because both sin2 θ(x) and λx+ µ(x) may be

discontinuous.

In order to introduce the arguments for MDE (7), we need some

topological idea, with the help of the continuous dependence of

solutions on measures in Theorem 2.

2. Given µ ∈M0[0, 1] and λ, by introducing a homotopy parameter

τ ∈ [0, 1], we consider MDE

dy•(x) + y(x) d(λx+ τµ(x)) = 0, x ∈ [0, 1].

3. The solutions and velocities define linear transformations

M(x;λ`+ τµ) on R2, which can be reduced to transformations

M̂(x;λ`+ τµ) on the unit circle S1.
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4. Given x ∈ [0, 1], M̂(x;λ`+ τµ) is continuous in τ ∈ [0, 1]. The

topological lifting of M̂(x;λ`+ τµ) to R is then well-defined once

the covering mapping of M̂(x;λ`+ 0 · µ) (a simple ODE) is chosen

(as the standard one).

By taking τ = 1, the argument of MDE (7) is defined as the mapping

θ(x;ϑ, λ`+ µ) on R.

5. Eigenvalues λ of (8) with (D) or with (N) are then determined by

equations

θ(1; 0, λ`+ µ) = mπ, m ∈ N,
or

θ(1;π/2, λ`+ µ) = mπ + π/2, m ∈ Z+ = {0} ∪ N.
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6. To obtain the structure of eigenvalues, estimates for

θ(1; θ0, λ`+ µ), as λ→ ±∞, can be done as for ODE. �
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III2. Weights are Measures

The weighted eigenvalue problem with the semi-positive

weighted measure ω is

dy• + τy dω(x) = 0, x ∈ I. (9)

Here ω ∈M0(I) be a semi-positive measure, i.e.,

• ω(x) : I → R is non-decreasing, • ω(I) > 0.

In this case, ωac, ωsc, and ωcs in the decomposition (4) are

also non-decreasing.
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In a preprint [17], we obtain some new results on

eigenvalues. The first is

Theorem 5. ([17]) Suppose that ω = ωcs and ω contains

precisely n ∈ N Dirac measures inside (0, 1). Then, with

(D), problem (9) admits precisely n weighted eigenvalues

τDi (ω), 1 ≤ i ≤ n.

This can be reduced to a system of linear equations in Rn.
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The second is that the converse of Theorem 5 is also true.

Theorem 6. ([17]) With (D), problem (9) admits pre-

cisely n weighted eigenvalues τDi (ω), 1 ≤ i ≤ n, iff ω

contains precisely n ∈ N Dirac measures inside the interior

(0, 1). In other words, the number of the Dirichlet weighted

eigenvalues of (9) is

Kω,D =

{
+∞ if ωc = ωac + ωsc 6= 0,

#(A ∩ (0, 1)) if ω =
∑

a∈Amaδa,

where ma > 0 for all a ∈ A.
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Theorem 7. ([17]) With (N), the number of the Neu-

mann weighted eigenvalues of (9) is

Kω,N =

{
+∞ if ωc 6= 0,

#A if ω =
∑

a∈Amaδa,

where ma > 0 for all a ∈ A.

For example, for

ω =

∞∑
n=1

1

n2
δ1/n,

both the Dirichlet and the Neumann have ∞ many

weighted eigenvalues.
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Ideas of the proof

1. For non-zero s.c. measures, the structure of weighted eigenvalues

of MDE is the same as that of ODE with definite integrable weights.

2. The crucial observation is that: for s.c. ω > 0, the argument{
dΘ(x, τ) = cos2 Θ(x, τ) dx+ τ sin2 Θ(x, τ) dω(x)

Θ(0) = 0

satisfies Θ(1, τ)→ +∞ as τ → +∞.

3. The proof is that all non-c.s. measures always admit infinitely

many weighted eigenvalues. �
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The third is some sharp strong continuity of weighted

eigenvalues of MDE in measures.

Theorem 8. ([17]) Suppose that semi-positive measures

ωk → ω in (M0(I), w∗). One has

• lim infk→∞Kωk ≥ Kω,

• for any 1 ≤ i ≤ Kω, there holds limk→∞ τi(ωk) = τi(ω).

• the normalized weighted eigen-functions Ei(·;ω) are also

strong continuous in ω.
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IV. Applications and Problems

1. Lyapunov stability criterion

For 1-periodic Hill’s equations,

q(t) > 0,

∫ 1

0

q≤4 =⇒ ÿ + q(t)y = 0 is stable.

Here we have the non-strict inequality ≤ and the optimal

constant 4.
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Using the weighted eigenvalues of MDE, there is some

connection with the Dirac measure ω = δ1/2. The unique

weighted Dirichlet eigenvalue is

τ1 = 4,

with the normalized eigen-function

E1(x) =
√

12 ·min{x, 1− x}, x ∈ [0, 1],

=
√

12 · dist(x,Z), x ∈ R.

The optimal Lyapunov criterion cannot be realized by

ODE, but by MDE.
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2. Extremal eigenvalues

The Banach-Alaglou theorem implies that bounded

subsets of M0(I) (in ‖ · ‖var) are relatively sequentially

compact (in the weak∗ topology w∗).

As a consequence of eigenvalues in measures,

min{λD1 (µ) : µ ∈M0(I), ‖µ‖var ≤ r} = L1(r)

can be realized by some measure. In fact, one has

L1(r) = λD1 (rδ1/2).
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Note that

inf{λD1 (q) : q ∈ L1(I), ‖q‖1 ≤ r} = L1(r),

which is not realized by any potential.
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3. Approximation of eigenvalues: ODE vs MDE

Dirac measures are approximated by smooth measures (in

the weak∗ topology). For example, given a c.s. measure

ω = ωcs =

n∑
i=1

miδai,

one has some smooth functions (measures)

ωk ∈ C∞(I) ∩M0(I) such that ωk → ωcs in (M0(I), w∗).

The continuity result in Theorem 8 means

lim
k→∞

τi(ωk) (ODEs) = τi(ωcs) (DE), 1 ≤ i ≤ n.
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Conversely, given any measure ω ∈M0(I), say a smooth

measure, define, for k ∈ N,

ωk :=
k∑
j=1

mk,jδj/k, mk,j := ω(Ik,j),

where Ik,1 := [0, 1/k] and Ik,j := ((j − 1)/k, j/k] for

2 ≤ j ≤ k. Then ωk are c.s. measures. It is easy to verify

that ωk → ω in (M0(I), w∗) as k →∞.
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By the continuity of Theorem 8 again, for any i ∈ N,

there holds

lim
k→∞

τi(ωk) (DEs) = τi(ω) (ODE).

The left-hand side is algebraic problems, while the

right-hand side is an ODE problem.

• For eigenvalues, algebraic problems and ODE problems

can be mutually approximated.

• For s.c. measures like the Devil’s staircases, what are

the eigenvalues and the dynamics?

• New approach to inverse spectral problems?
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4. Orthogonal systems deduced from MDE

Given µ ∈M0(I), it can be proved that {Ei(·;µ)} forms

an orthogonal system for L2(I).

Problem: Is the orthogonal system {Ei(·;µ)} complete in

L2(I)?

If yes, like the Fourier expansion, we may use them to

effectively expand functions with jumps, like wavelets.

Thank you
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